Abdollahi, S., Hassanzadeh, N., Sohrabi, M., Loppi, S., 2025. Biomonitoring of Potentially Toxic Elements in the Urban Atmosphere of Tehran Metropolis Using the Lichen Anaptychia setifera (Mereschk.) Räsänen. Atmosphere (Basel). 16. https://doi.org/10.3390/atmos16020206
DOI: https://doi.org/10.3390/atmos16020206
Google Scholar
Bargagli, R., 2016. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 572, 216–231. https://doi.org/10.1016/j.scitotenv.2016.07.202
DOI: https://doi.org/10.1016/j.scitotenv.2016.07.202
Google Scholar
Boquete, M.T., Aboal, J.R., Carballeira, A., Fernández, J.A., 2014. Effect of age on the heavy metal concentration in segments of Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals. Atmos. Environ. 86, 28–34. https://doi.org/10.1016/j.atmosenv.2013.12.039
DOI: https://doi.org/10.1016/j.atmosenv.2013.12.039
Google Scholar
Brodzka, R., Trzcinka-Ochocka, M., 2009. Mercury in hair - An indicator of environmental exposure. Med. Pr. 60, 303–314.
Google Scholar
Cai, K., Li, C., 2019. Street dust heavy metal pollution source apportionment and sustainable management in a typical city—shijiazhuang, china. Int. J. Environ. Res. Public Health 16. https://doi.org/10.3390/ijerph16142625
DOI: https://doi.org/10.3390/ijerph16142625
Google Scholar
Chmielewski, J., Wójtowicz, B., Żeber-Dzikowska, I., Łuszczki, J.J., Dziechciaż, M., Sierpiński, R., Marszałek, A., Gworek, B., Szpringer, M., 2020. Mercury. Sources of release into environment, pollution indicators, threats to human health and the role of education. Przem. Chem. 99, 1227–1233. https://doi.org/10.15199/62.2020.8.23
DOI: https://doi.org/10.15199/62.2020.8.23
Google Scholar
Díez, S., 2009. Human Health Effects of Methylmercury Exposure, in: Whitacre, D.M. (Ed.), Reviews of Environmental Contamination and Toxicology. Springer New York, New York, NY, pp. 111–132. https://doi.org/10.1007/978-0-387-09647-6_3
DOI: https://doi.org/10.1007/978-0-387-09647-6_3
Google Scholar
Fernández, J.A., Aboal, J.R., Carballeira, A., 2000. Use of native and transplanted mosses as complementary techniques for biomonitoring mercury around an industrial facility. Sci. Total Environ. https://doi.org/10.1016/S0048-9697(00)00478-2
DOI: https://doi.org/10.1016/S0048-9697(00)00478-2
Google Scholar
Gatina, E., Zinicovscaia, I., Yushin, N., Chaligava, O., Frontasyeva, M., Sharipova, A., 2024. Assessment of the Atmospheric Deposition of Potentially Toxic Elements Using Moss Pleurozium schreberi in an Urban Area: The Perm (Perm Region, Russia) Case Study. Plants 13, 2353.
DOI: https://doi.org/10.3390/plants13172353
Google Scholar
Isinkaralar, O., Isinkaralar, K., Bayraktar, E.P., 2023. Monitoring the spatial distribution pattern according to urban land use and health risk assessment on potential toxic metal contamination via street dust in Ankara, Türkiye. Environ. Monit. Assess. 195. https://doi.org/10.1007/s10661-023-11705-9
DOI: https://doi.org/10.1007/s10661-023-11705-9
Google Scholar
Jakubus, M., Tatuśko, N., 2015. Review of Selected Biological Methods of Assessing the Quality of Natural Environment. Inżynieria Ekol. 42, 78–86. https://doi.org/10.12912/23920629/1989
DOI: https://doi.org/10.12912/23920629/1989
Google Scholar
Kondej M, 2006. Narażenie na metale i ich związki w procesach produkcji szkła. Bezpieczeństwo Pr. 7–8, 28–30.
Google Scholar
Kot, K., Kosik-bogacka, D., Łanocha-Arendarczyk, N., Ciosek, Ż., 2016. The influence of mercury compounds on the human body. Farm. Współczesna 9, 210–216.
Google Scholar
Kozak, J., Włodarczyk-Makuła, M., 2016. Ogólna charakterystyka metod biologicznej kontroli jakości środowiska. LAB Lab. Apar. Badania 21, 22–27.
Google Scholar
Król, A., Kukulska-Zając, E., 2020. Mercury in samples of gas mixtures – a review of mercury sampling and determination methods. Naft. - Gaz 2020, 846–853. https://doi.org/10.18668/NG.2020.11.10
DOI: https://doi.org/10.18668/NG.2020.11.10
Google Scholar
Kwasigroch, U., Bełdowska, M., Jędruch, A., Łukawska-Matuszewska, K., 2021. Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea. Environ. Sci. Pollut. Res. 28, 35690–35708. https://doi.org/10.1007/s11356-021-13023-4
DOI: https://doi.org/10.1007/s11356-021-13023-4
Google Scholar
Macedo-Miranda, G., Avila-Pérez, P., Gil-Vargas, P., Zarazúa, G., Sánchez-Meza, J.C., Zepeda-Gómez, C., Tejeda, S., 2016. Accumulation of heavy metals in mosses: a biomonitoring study. Springerplus 5. https://doi.org/10.1186/s40064-016-2524-7
DOI: https://doi.org/10.1186/s40064-016-2524-7
Google Scholar
Maqbool, F., Niaz, K., Hassan, F.I., Khan, F., Abdollahi, M., 2017. Immunotoxicity of mercury: Pathological and toxicological effects. J. Environ. Sci. Heal. Part C 35, 29–46. https://doi.org/10.1080/10590501.2016.1278299
DOI: https://doi.org/10.1080/10590501.2016.1278299
Google Scholar
Markert, B., Wappelhorst, O., Weckert, V., Herpin, U., Siewers, U., Friese, K., Breulmann, G., 1999. The use of bioindicators for monitoring the heavy-metal status of the environment. J. Radioanal. Nucl. Chem. 240, 425–429. https://doi.org/10.1007/BF02349387
DOI: https://doi.org/10.1007/BF02349387
Google Scholar
Migaszewski, Z.M., Gałuszka, A., Dołe ogonekgowska, S., Crock, J.G., Lamothe, P.J., 2010. Mercury in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska: Understanding the origin of pollution sources. Ecotoxicol. Environ. Saf. 73, 1345–1351. https://doi.org/10.1016/j.ecoenv.2010.06.015
DOI: https://doi.org/10.1016/j.ecoenv.2010.06.015
Google Scholar
Mishra, P., Pandey, C.M., Singh, U., Gupta, A., Sahu, C., Keshri, A., 2019. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 22, 67–72. https://doi.org/10.4103/aca.ACA_157_18
DOI: https://doi.org/10.4103/aca.ACA_157_18
Google Scholar
Ronci, L., Meccoli, L., Iannilli, V., Menegoni, P., De Matthaeis, E., Setini, A., 2016. Comparison between active and passive biomonitoring strategies for the assessment of genotoxicity and metal bioaccumulation in Echinogammarus veneris (Crustacea: Amphipoda). Ital. J. Zool. 83, 162–172. https://doi.org/10.1080/11250003.2016.1169321
DOI: https://doi.org/10.1080/11250003.2016.1169321
Google Scholar
Samecka-Cymerman, A., Kosior, G., Kolon, K., Wojtuń, B., Zawadzki, K., Rudecki, A., Kempers, A.J., 2013. Pleurozium schreberi as bioindicator of mercury pollution in heavily industrialized region. J. Atmos. Chem. https://doi.org/10.1007/s10874-013-9256-7
DOI: https://doi.org/10.1007/s10874-013-9256-7
Google Scholar
Świsłowski P, Banach E, Rajfur M, 2019. Passive biomonitoring of influence of the communication traffic on deposition the pollution near the motorway. Ecol. Chem. Eng. A 26, 113–125. https://doi.org/10.2428/ecea.2019.26(1-2)14
Google Scholar
Weatheronline.pl, 2024. Opole - wind direction (2024) [WWW Document]. weatheronline.pl. URL https://www.weatheronline.pl/weather/maps/city?FMM=10&FYY=2024&LMM=12&LYY=2024&WMO=12530&CONT=plpl®ION=0001&LAND=PL&ART=WDR&R=0&NOREGION=0&LEVEL=162&LANG=pl&MOD=tab (accessed 3.4.25).
Google Scholar
Yang, L., Zhang, Y., Wang, F., Luo, Z., Guo, S., Strähle, U., 2020. Toxicity of mercury: Molecular evidence. Chemosphere 245, 125586. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125586
DOI: https://doi.org/10.1016/j.chemosphere.2019.125586
Google Scholar
Zawadzki, K., Samecka-Cymerman, A., Kolon, K., Wojtuń, B., Mróz, L., Kempers, A.J., 2016. Metals in Pleurozium schreberi and Polytrichum commune from areas with various levels of pollution. Environ. Sci. Pollut. Res. 23, 11100–11108. https://doi.org/10.1007/s11356-016-6278-0
DOI: https://doi.org/10.1007/s11356-016-6278-0
Google Scholar
Zawadzki, K., Sokołowska, K., Samecka-Cymerman, A., Kolon, K., Dubińska, A., Kempers, A.J., 2014. Mercury in Pleurozium schreberi and Polytrichum commune from areas with various levels of Hg pollution - an accumulation and desorption experiment with microscopic observations. Ecotoxicol. Environ. Saf. 108, 36–41. https://doi.org/10.1016/j.ecoenv.2014.06.013
DOI: https://doi.org/10.1016/j.ecoenv.2014.06.013
Google Scholar
Zielińska, M., Rajfur, M., Kozłowski, R., Kłos, A., 2013. ACTIVE BIOMONITORING OF THE ODRA RIVER USING Palmaria palmata ALGAE. Proc. ECOpole 7, 757–763. https://doi.org/10.2429/proc.2013.7(2)099
Google Scholar