Cultivation of microalgae (Chlorella vulgaris) in laboratory photobioreactor

Łukasz BIŁOS


https://orcid.org/0000-0003-2623-5935

Agnieszka PATYNA



Małgorzata PŁACZEK


https://orcid.org/0000-0003-1751-3200

Stanisław WITCZAK


https://orcid.org/0000-0002-8842-1277


Abstract

Algal cultivation fits in sustainable development of natural environment. Their biomass is increasingly regarded as a potential resource with a potential in production of biofuels, electricity and heat. Algae contain a lot of nutrients, so they can be used as food for humans and livestock. Because of their valuable composition (high nutrient content) they are used as supplements of balanced diet, in turn taking into account their biosorption ability they are used to detoxification of human body. Algae cultivation does not require large areas of land to expose cells to sunlight, so their production rate is higher compared to the vascular plants. Moreover, the cultivation in closed photobioreactors leads to high biomass concentration. However, this type of cultivation needs to be performed under strictly observed conditions, which can be evaluated by experiments. This study reports the results of a study involving the development of test stand in which high biomass productivity of Chlorella vulgaris can be achieved. This paper focuses on a study including Chlorella cultivation and the results of an experiment conducted in a laboratory photobioreactor.

Keywords:

algae cultivation, biomass productivityChlorella vulgaris, photobioreactor

Biłos, Ł.; Golla, S.; Patyna, A.. (2016). Wykorzystanie glonów w rolnictwie i przemyśle spożywczym. Przemysł Chemiczny 9: 1797-1801.
  Google Scholar

Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology 70: 313–321.
  Google Scholar

Chai, X.; Zhao, X. (2012). Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank. Bioresour Technology 116: 360-365.
  Google Scholar

Chen, C. Y.; Yeh, K. L.; Aisyah, R.; Lee, D. J.; Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 102: 17-81.
  Google Scholar

Guiry, M. D. (2012). How many species of algae are there? Phycological Society of America 48: 1057–1063.
  Google Scholar

Holtermann, T.; Madlener, R. (2011). Assessment of the technological development and economic potential of photobioreactors. Applied Energy 88: 1906–1919.
  Google Scholar

Jacob-Lopes, E.; Ferreira Lacerda, L. M. C.; Teixeira Franco, T. (2008). Biomass production and carbon dioxide fixation by Aphanothecemicroscopica Nägeli in a bubble column photobioreactor. Biochemical Engineering Journal 40(1): 27-34.
  Google Scholar

Li, J.; Xu, N. S.; Su W. W. (2003). Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochemical Engineering Journal 14: 51–65.
  Google Scholar

Mata, T. M.; Martins, A. A.; Caetano N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14: 217–232.
  Google Scholar

Mohsenpour, S. F.; Willoughby, N. (2013). Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technology 142: 147– 153.
  Google Scholar

Pielesz, A. (2010). Algi i alginiany. Leczenie, zdrowie, uroda. Wydawnictwo internetowe e-bookowo.
  Google Scholar

Plaza, M.; Cifuentes, A.; Ibanez, E. (2008). In the search of new functional food ingredients from algae. Trends Foodsci. Technol. 19: 31-39.
  Google Scholar

Schroeder, G.; Messyasz, B.; Łęska, B.; Fabrowska, J.; Pikosz, M.; Rybak, A. (2013). Biomasa alg słodkowodnych surowcem dla przemysłu i rolnictwa. Przem. Chem. 92(7): 1380-1384.
  Google Scholar

Seo, I.; Lee, I.; Hwang, H.; Hong, S.; Bitog, J.P.; Kwon, K.; Lee, C.; Kim, Z.;Cuello, J.L.(2012). Numerical investigation of a bubble-column photo-bioreactor design for microalgae cultivation. Biosystems engineering 113: 229-241.
  Google Scholar

Singh, R. N.; Sharma, S. (2012). Development of suitable photobioreactor for algae production – A review. Renewable and Sustainable Energy Reviews 16: 2347– 2353.
  Google Scholar

Ugwu, C. U.; Aoyagi, H.; Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology 99: 4021–4028.
  Google Scholar

Yoo, C.; Jun, S. Y.; Lee, J. Y.; Ahn, C. Y.; Oh, H. M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101(1): 71–74.
  Google Scholar

Zhang, K.; Kurano, N.; Miyachi, S. (2002). Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng. 25(2): 97101.
  Google Scholar

Zijffers, J-W. F.; Janssen, M.; Tramper, J.; Wijffels, R. H. (2008). Design Process of an Area-Efficient Photobioreactor. Mar Biotechnol. 10: 404–415.
  Google Scholar

Download


Published
2020-12-15

Cited by

BIŁOS, Łukasz, PATYNA, A., PŁACZEK, M., & WITCZAK, S. (2020). Cultivation of microalgae (Chlorella vulgaris) in laboratory photobioreactor. Economic and Environmental Studies, 16(4 (40), 843–852. Retrieved from https://czasopisma.uni.opole.pl/index.php/ees/article/view/3082

Authors

Łukasz BIŁOS 
https://orcid.org/0000-0003-2623-5935

Authors

Agnieszka PATYNA 

Authors

Małgorzata PŁACZEK 
https://orcid.org/0000-0003-1751-3200

Authors

Stanisław WITCZAK 
https://orcid.org/0000-0002-8842-1277

Statistics

Downloads

Download data is not yet available.