Cultivation of microalgae (Chlorella vulgaris) in laboratory photobioreactor
Łukasz BIŁOS
https://orcid.org/0000-0003-2623-5935
Agnieszka PATYNA
Małgorzata PŁACZEK
https://orcid.org/0000-0003-1751-3200
Stanisław WITCZAK
https://orcid.org/0000-0002-8842-1277
Abstrakt
Algal cultivation fits in sustainable development of natural environment. Their biomass is increasingly regarded as a potential resource with a potential in production of biofuels, electricity and heat. Algae contain a lot of nutrients, so they can be used as food for humans and livestock. Because of their valuable composition (high nutrient content) they are used as supplements of balanced diet, in turn taking into account their biosorption ability they are used to detoxification of human body. Algae cultivation does not require large areas of land to expose cells to sunlight, so their production rate is higher compared to the vascular plants. Moreover, the cultivation in closed photobioreactors leads to high biomass concentration. However, this type of cultivation needs to be performed under strictly observed conditions, which can be evaluated by experiments. This study reports the results of a study involving the development of test stand in which high biomass productivity of Chlorella vulgaris can be achieved. This paper focuses on a study including Chlorella cultivation and the results of an experiment conducted in a laboratory photobioreactor.
Klíčová slova:
algae cultivation, biomass productivityChlorella vulgaris, photobioreactorReference
Biłos, Ł.; Golla, S.; Patyna, A.. (2016). Wykorzystanie glonów w rolnictwie i przemyśle spożywczym. Przemysł Chemiczny 9: 1797-1801.
Google Scholar
Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology 70: 313–321.
Google Scholar
Chai, X.; Zhao, X. (2012). Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank. Bioresour Technology 116: 360-365.
Google Scholar
Chen, C. Y.; Yeh, K. L.; Aisyah, R.; Lee, D. J.; Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 102: 17-81.
Google Scholar
Guiry, M. D. (2012). How many species of algae are there? Phycological Society of America 48: 1057–1063.
Google Scholar
Holtermann, T.; Madlener, R. (2011). Assessment of the technological development and economic potential of photobioreactors. Applied Energy 88: 1906–1919.
Google Scholar
Jacob-Lopes, E.; Ferreira Lacerda, L. M. C.; Teixeira Franco, T. (2008). Biomass production and carbon dioxide fixation by Aphanothecemicroscopica Nägeli in a bubble column photobioreactor. Biochemical Engineering Journal 40(1): 27-34.
Google Scholar
Li, J.; Xu, N. S.; Su W. W. (2003). Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochemical Engineering Journal 14: 51–65.
Google Scholar
Mata, T. M.; Martins, A. A.; Caetano N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14: 217–232.
Google Scholar
Mohsenpour, S. F.; Willoughby, N. (2013). Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technology 142: 147– 153.
Google Scholar
Pielesz, A. (2010). Algi i alginiany. Leczenie, zdrowie, uroda. Wydawnictwo internetowe e-bookowo.
Google Scholar
Plaza, M.; Cifuentes, A.; Ibanez, E. (2008). In the search of new functional food ingredients from algae. Trends Foodsci. Technol. 19: 31-39.
Google Scholar
Schroeder, G.; Messyasz, B.; Łęska, B.; Fabrowska, J.; Pikosz, M.; Rybak, A. (2013). Biomasa alg słodkowodnych surowcem dla przemysłu i rolnictwa. Przem. Chem. 92(7): 1380-1384.
Google Scholar
Seo, I.; Lee, I.; Hwang, H.; Hong, S.; Bitog, J.P.; Kwon, K.; Lee, C.; Kim, Z.;Cuello, J.L.(2012). Numerical investigation of a bubble-column photo-bioreactor design for microalgae cultivation. Biosystems engineering 113: 229-241.
Google Scholar
Singh, R. N.; Sharma, S. (2012). Development of suitable photobioreactor for algae production – A review. Renewable and Sustainable Energy Reviews 16: 2347– 2353.
Google Scholar
Ugwu, C. U.; Aoyagi, H.; Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology 99: 4021–4028.
Google Scholar
Yoo, C.; Jun, S. Y.; Lee, J. Y.; Ahn, C. Y.; Oh, H. M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101(1): 71–74.
Google Scholar
Zhang, K.; Kurano, N.; Miyachi, S. (2002). Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng. 25(2): 97101.
Google Scholar
Zijffers, J-W. F.; Janssen, M.; Tramper, J.; Wijffels, R. H. (2008). Design Process of an Area-Efficient Photobioreactor. Mar Biotechnol. 10: 404–415.
Google Scholar