The The kinetics of nitrogen oxides formation in the flame gas
Monika Zajemska
https://orcid.org/0000-0002-0982-0983
Anna Poskart
https://orcid.org/0000-0001-7207-9211
Dorota Musiał
https://orcid.org/0000-0002-0667-3033
Abstrakt
This paper treats about the problem of nitrogen oxides formation in the process of natural gas combustion. The analysis of the influence of selected combustion parameters on the concentration of NO, N2O and NO2 in the combustion products was done. From many factors determining NOx formation two was selected, ie temperature and residence time at the highest temperature zone, considering them to be particularly important. Detailed analysis of the absolute rate of NOx for various combustion temperatures was done with the use of commercial software CHEMKIN-PRO. Moreover, the paths of formation of above- mentioned compounds were determined.
The main goal of the research is to analyze the impact of selected parameters of combustion process, such as temperature, on formation of thermal nitrogen oxides, with special emphasis on the chemistry of the process. The use of numerical methods to predict the products of combustion process, especially NOx, is of great importance in terms of ecological and economical aspects
Klíčová slova:
combustion, numerical modelling, nitrogen oxidesReference
Abián, M.; Peribáñez, E., Millera, A.; Bilbao, R.; Alzueta, M.U. (2014). Impact of nitrogen oxides (NO, NO2, N2O) on the formation of soot. Combust. Flame 161(1): 280-287. DOI: 10.1016/j.combustflame.2013.07.015.
Google Scholar
Adamczuk, M. (2010). Prediction of chemical composition of combustion products in reheating furnaces using the CHEMKIN-PRO software. Metallurgist-Metallurgical News 3: 102-105.
Google Scholar
Adamczuk, M. (2011). The requirements of computational art in terms of numerical modelling of chemical composition of combustion products. Modeling Engineering 10(41): 453-462. Available at: http://www.kms.polsl.pl/mi/pelne_10/54.pdf. Accessed 24 February 2015.
Google Scholar
Bulewicz, E.M. (2000). Nitrogen oxides formed during the combustion. In: Kordylewski, W. (ed.). Low-emission techniques of combustion in energy sector. Wrocław, Poland: University of Technology.
Google Scholar
Burcat, A.; Gardiner, W.C. (2000). Gas phase combustion chemistry. New York: Springer. Available at: http://www.technion.ac.il/~aer0201. Accessed 15 January 2015.
Google Scholar
Curran, H.J.; Gaffuri, P.; Pitz, W.J.; Westbrook, C.K. (2002). A comprehensive modeling study of iso-octane oxidation. Combust. Flame., 129: 253-80. Available at: http://www-cms.llnl. Accessed 15 January 2015.
Google Scholar
De Soete, G. (1974). Overall reaction rate of NO and N2 formation from fuel nitrogen. 15th Combustion Symposium, Tokyo, Japan: 1011-1024. DOI: 10.1016/S0082-0784(75)80374-2.
Google Scholar
Fenimore, C.P. (1971). Formation of nitric oxide in premixed hydrocarbon flames. Proceedings of 13-th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh: 373-380.
Google Scholar
Gradoń, B. (2003). The role of the nitrous oxide in modelling of the NO emission from combustion processes of gaseous fuels in high temperature furnaces. Gliwice, Poland: Scientific Papers of Silesian University of Technology.
Google Scholar
Hill, S.C.; Smoot, L.D. (2000). Modeling of nitrogen oxides formation and destruction in combustion systems. Prog. Energy Combust. Sci. 26: 417-458. DOI: 10.1016/S0360-1285(00)00011-3.
Google Scholar
Konnov, A.A. (2000). Detailed reaction mechanism for small hydrocarbons combustion. Release 0.5. Available at: http://homepages.vub.ac.be/_akonnov
Google Scholar
Kordylewski, W. (Eds.), (2000). Low-emission techniques of combustion in energy sector. Wrocław, Poland: University of Technology. Polish.
Google Scholar
Magdziarz, A.; Wilk, M.; Zajemska, M. (2011). Modelling of pollutants from the biomass combustion process. Chem. Process Eng. 32(4): 423-433. DOI: 10.2478/v10176-011-0034-2.
Google Scholar
Miller, J.D.; Bowman, C.T. (1989). Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15: 287-338. DOI: 10.1016/0360-1285(89)90017-8.
Google Scholar
Rodat, S.; Abanades, S.; Coulié, J.; Flamand, F. (2009). Kinetic modelling of methane decomposition in a tubular solar reactor. Chem. Eng J. 146: 120-127. DOI: 10.1016/j.cej.2008.09.008.
Google Scholar
Simmie, J.M. (2003). Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Prog. Energy Combust. Sci. 29: 599-634. DOI: 10.1016/S0360-1285(03)00060-1.
Google Scholar
Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C.; Lissianski, V.V.; Qin, Z. (2002). Available at: http://www.me.berkeley.edu/gri_mech/. Accessed 17 January 2015.
Google Scholar
Weston, K.C. (2000). Energy conversion. Brooks/Cole. Available at: http://www.personal.utulsa.edu/ ~kenneth-weston/. Accessed 17 January 2015.
Google Scholar
Wilk, R. (2000). The foundations of low-emission combustion. Katowice, Poland: Publishing house Gnome.
Google Scholar
Zajemska, M.; Musiał D.; Poskart A. (2014). Application of Chemkin and Comsol programs in the chemical composition calculations of natural gas combustion products. Combust. Sci. Technol. 186: 153-172. DOI: 10.1080/00102202.2013.854206.
Google Scholar
Zajemska, M.; Musiał D.; Poskart A. (2014). Effective methods of reduction of nitrogen oxides concentration during the natural gas combustion. Environ. Technol. 35(5): 602-610. DOI: 10.1080/09593330.2013.839722.
Google Scholar
Zajemska, M.; Poskart, A. (2013). Applicability of numerical methods for predicting and reducing the emission of pollutants from combustion plants used in chemical and refinery industries. Przem. Chem. 92(3): 357-361.
Google Scholar
Zajemska, M.; Poskart, A. (2013). Prediction of the chemical composition of combustion products in metallurgical heat furnaces with numerical methods use. La Metallurgia Italiana 10: 33-40.
Google Scholar
##libcom.statistics##
Stažení
Licence
Copyright (c) 2020 Economic and Environmental Studies
Tato práce je licencována pod Mezinárodní licencí Creative Commons Attribution-NonCommercial-ShareAlike 4.0.