Post-coagulation sludge management for water and wastewater treatment with focus on limiting its impact on the environment
Abstrakt
Water treatment process produces great amount of sludge. According to growing interest in sustainable development and environment protection, sludge management problem should be taken into consideration. Accordingly, its recovery, recycling and reuse are optimal solutions for Water Treatment Sludge(WTS) management. The conventional Water Treatment Plants (WTP) produce even up to 100 000 ton/year of sludge. The coagulation process produces a huge amount of sludge. This contamination may be recovered and reused. Some amount of coagulants may be recovered and reused during the wastewater treatment process. The Water Treatment Sludge with e.g. iron or alum content, may be also used as a coagulant at a wastewater treatment plant. In the course of this paper, few methods for post-coagulation sludge management are presented.
Klíčová slova:
post-coagulation sludge, sludge management, water treatmentReference
Abhilash, T. Nair; Mansoor Ahammed, M. (2015). The reuse of water treatment sludge as a coagulant for posttreatment of UASB reactor treating urban wastewater. Journal of Cleaner Production 96: 272-281.
Google Scholar
Ahmad, T.; Ahmad, K.; Alam, M. (2016). Sustainable management of water treatment sludge through 3‘R’ concept. Journal of Cleaner Production 124: 1–13.
Google Scholar
Balcerzak, W.; Luszczek, B. (2015). An Attempt at Assessment of Possibilities for Utilization of Sludge Produced During Water Clarification for Phosphorus Precipitation in Municipal Wastewater Treatment Plants. Ochrona Środowiska 37(3): 57–60.
Google Scholar
Bartoszewski, K. (1996). Zagospodarowanie ścieków i odpadów z odnowy wód. Odnowa wody. Podstawy teoretyczne procesów. (Waste water treatment and waste water recovery. Renewal of water. Theoretical basis of processes.). Wrocław: PWr.
Google Scholar
Borowski, S. (2000). Tlenowa stabilizacja termofilowa osadów ściekowych. (Thermophilic aerobic digestion of sludge). OchronaŚrodowiska 79(4): 21-25.
Google Scholar
Gómez, R. R. (2011). Upflow anaerobic sludge blanket reactor: Modelling. Stockholm, Sweden: KTH Chemical Science and Engineering.
Google Scholar
Jangkorn, S.; Kuhakaew, S.; Theantanoo, S.; Klinla, H.; Sriwiriyarat, T. (2011). Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants. Journal of Environmental Sciences 23(4): 587–594.
Google Scholar
Kyncl, M.; Číhalová, S.; Juroková, M. (2012). Disposal and Reuse of the Water Processing Sludge. Journal of the Polish Mineral Engineering Society 2(13): 11-20.
Google Scholar
Leszczyńska, M.; Sozański, M. M. (2009). The harmfulness and toxicity of the water treatment process residuals. Ochrona Środowiska i ZasobówNaturalnych (Protection of Environment and Natural Resources) 40: 575585.
Google Scholar
Luo, H.; Kuo W.; Lin D. (2008). The application of waterworks sludge ash to stabilize the volume of cement paste. WaterSci. Technol. 57(2): 243-250.
Google Scholar
Nowacka, A.; Włodarczyk-Makuła, M. (2014). Charakterystyka osadów powstających w procesach uzdatniania wody ze szczególnym uwzględnieniem osadów pokoagulacyjnych. (Characteristics of sludge produced in water treatment processes with particular emphasis on sludge after coagulation.) Technologia Wody. Water Technology 6(38): 34-39.
Google Scholar
Pasela, R; Totczyk, G.; Klugiewicz, I.; Górski, Ł. (2015). Usuwanie fosforanów z wykorzystaniem osadów potechnologicznych pochodzących ze stacji uzdatniania wody. (Removal of phosphates from sediments using the technology coming from the water treatment plant.) Annual Set The Environment Protection, Rocznik Ochrona Środowiska 17: 1660–1673.
Google Scholar
Płonka, I.; Barbusiński, K.; Pieczykolan, B. (2010). Aerobic digestion of post-coagulation sludge. Architecture Civil Engineering Environment 3(2): 105-111.
Google Scholar
Rozporządzenie Ministra Środowiska z dnia 9 grudnia 2014 r. w sprawie katalogu odpadów (Regulation of the Minister of Environment of 09 December 2014 on the catalog of waste).
Google Scholar
Szerzyna, S.; (2013). Możliwości wykorzystania osadów powstających podczas oczyszczania wody. (Possibilities of using sludge produced during water treatment) Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska. (Interdisciplinary issues in engineering and environmental protection): 609-617. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
Google Scholar
Ustawa z dnia 14 grudnia 2012 r. o odpadach, Dz.U. 2013 nr 0 poz. 21 (The Act of 14 December 2012. on waste, OJ No 2013 No. 0 titles. 21).
Google Scholar
Verlicchi, P.; Masotti, L. (2000). Reuse of drinking water treatment plants sludges in agriculture: problems, perspectives and limitations. In: Technology transfer. Proceedings of the 9th International Conference on the FAO ESCORENA Network on recycling of agricultural, municipal and industrial residues in agriculture. Gargano, Italy 2000(6): 67-73.
Google Scholar
Verrelli, D. I.; Dixon, D. R.; Scales, P. J. (2009). Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 348(1–3): 14–23.
Google Scholar
Yang, Y.; Zhao, Y. Q.; Babatunde, A. O.; Wang, L.; Ren, Y. X.; Han, Y. (2006). Characteristics and mechanisms of phosphate adsorptionon dewatered alum sludge. Separation and Purification Technology 51: 193–200.
Google Scholar