Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202-203: 183–191.
Angına, D.; Köse, T.E.; Selengil, U. (2013). Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff. Applied Surface Science 280: 705-710.
Athappan, A.; Sattler, M.L.; Sethupathi, S. (2015). Selective catalytic reduction of nitric oxide over cerium-doped activated carbons. Journal of Environmental Chemical Engineering 3(4): 2502-2513.
Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337: 1–18.
Bartuś, T. (2003). Parametry chemiczno - technologiczne i oparte na nich klasyfikacje węgli brunatnych. Available at: http://home.agh.edu.pl/~bartus/efekty_docs/parametry_wegla_dzia%B3alnosc_statutowa_2003-2004.docAccessed 4 April 2017.
Borowiecki, T.; Kijeński J.; Machnikowski, J.; Ściążko, M. (2008). Czysta energia, produkty chemiczne i paliwa z węgla – ocena potencjału rozwojowego. Zabrze: IChPW.
Bubel, F.; Rogosz, B. (2014). Biowęgiel – Właściwości i zastosowanie. Available at: http://globenergia.pl/biowegielwlasciwosci-i-zastosowanie. Accessed 4 April 2017.
Dabioch, M.; Skorek, R.; Kita, A.; Janoska, P.; Pytlakowska, K.; Zerzucha, P.; Sitko, R. (2013). A study on adsorption of metals by activated carbon in a large-scale (municipal) process of surface water purification. Central European Journal of Chemistry 11(5): 742-753.
Gao, J.F.B.; Zimmerman, A.R.; Ro, K.S.; Chen, J. (2016). Physically (CO2) activated hydrochars from hickory and peanut hull: Preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium. Royal Society of Chemistry 6: 24906–24911.
Gładki, J. (2017). Biowęgiel szansą dla zrównoważonego rozwoju. Sędziszów: Oficyna Poligraficzna Apla Sp.J.
Graber, E.R.;, Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337: 481–496.
Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Pullammanappallil, P.; Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology 110: 50-56.
Jiang, M.; Ning, P.; Wang, Z.H.; Bai, Y.W.; Chen W.;, Zhang W.; Wang R.B. (2012). Preparation and adsorption property of modified activated carbon for purification of HCN in closed carbide furnace tail gas. Advanced Materials Research 476-478: 1862-1866.
Kim, D.; Yoshikawa, K..; Park, K-Y. (2015). Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy. Energies 8: 14040-14048.
Kołtowski, M.; Hilber, I.; Bucheli, T.D.; Oleszczuk, P. (2016). Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils. Environmental Science and Pollution Research 23(11): 11058-11068.
Laird D. (2008). The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal 100: 178-181.
Lam, S.S.; Liew, R.K.; Wong, Y.M.; Azwar, E.; Jusoh. A.; Wahi, R. (2016). Activated carbon for catalyst support from microwave pyrolysis of orange peel. Waste and Biomass Valorization: 1-11.
Lehman, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment 5(7): 381-387.
Lehmann, J.; Rillig, M.; Thies, J.; Masiello, C.; Hockaday, W.; Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biology and Biochemistry 43(9): 1812-1836.
Lima, I.M.; Boateng, A.A.; Klasson, K.T. (2010). Physicochemical and adsorptive propertiesof fast-pyrolysis biochars and their steam activated counterparts. Chemical Technology and Biotechnology 85(11): 1515-1521.
Liu, W.; Wang, X.; Ning, P.; Chen, W.; Qiu, J.; Zhou, Y. (2013). Adsorptive purification of C4H4S in industrial waste gas by Cu-based modified activated carbon. Journal of Central South University (Science and Technology) 44(5): 2165-2172.
Lompe, K.M.; Menard D.; Barbeau, B. (2016). Performance of biological magnetic powdered activated carbon fordrinking water purification. Water Research 96: 42-51.
Lu, Q.; Ye, X.; Zhang, Z.; Cui, M.S.; Guo, H.; Qi, W.; Dong, Ch.; Yang, Y. (2016). Catalytic fast pyrolysis of bagasse using activated carbon catalyst to selectively produce 4-ethyl phenol. Energy and Fuels 30(12): 10618-10626.
Mahmoud, D.K.; Salleh, M.A.M.; Karim, W.A.W.A.; Idris, A.; Abidin, Z.Z. (2012). Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering
Journal 181-182: 449-457.
Malińska, K. (2014). Biowęgiel dla środowiska i nie tylko. Chemia Przemysłowa 3: 36-39.
Mazlan, M.A.F.; Uemura, Y.; Osman, N.B.; Yusup, S. (2015). Characterizations of Bio-char from Fast Pyrolysis of Meranti Wood Sawdust. Journal of Physics: Conference Series 622: 1-7.
McLaughlin, H.; Pyle, K. (2016). Practical applications of biochar in the landscape. Available at: http://www.ecolandscaping.org/04/biochar/practical-applications-of-biochar-in-the-landscape/. Accessed 7 April 2017.
Medyńska-Juraszek, A. (2016). Biowęgiel jako dodatek do gleb. Soil Science Annual 67(3): 151-157.
Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A.. (2016). Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Vaste Biomass Valor 7: 201-235.
Oghenejoboh, K.M.; Otuagoma, S.O.; Ohimor, E.O. (2016). Application of cassava peels activated carbon in the treatment of oil refinery wastewater - a comparative analysis. Journal of Ecological Engineering 17(2): 52-58.
Ozçimen, D.; Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy 35: 1319-1324.
Rajapaksha, A.U.; Vithanage, M.; Lee, S.S.; Seo, D-Ch.; Tsang, D.C.W.; Ok, Y.S. (2016). Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption. Journal of Soils and Sediments 16(8): 2081-2089.
Rashidi, N.A.;, Yusup, S. (2015). Effect of process variables on the production of biomass-based activated carbons for carbon dioxide capture and sequestration. Chemical Engineering Transactions 45: 1507-1512.
Ren, Z.-D.; Chen, L.; Ning, P. (2006). Progress in purification of PH3, H2S in yellow phosphorus tail gas with activated carbon. Modern Chemical Industry 26(11): 25-28.
Ronsse, F.; Van Hecke, S.; Dickinson, D.; Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5: 104-115.
Schmidt H.P. (2014). The use of biochar as building material. The Biochar Journal. Available at: https://www.biocharjournal.org/en/ct/3-The-use-of-biochar-as-building-material-. Accessed 11 April 2017.
Schmidt, H.P. (2013). The use of biochar as building material - cities as carbon sinks. Journal for terrior-wine and biodiversity. Available at: http://www.ithaka-journal.net/pflanzenkohle-zum-hauser-bauen-stadte-alskohlenstoffsenken?lang=en. Accessed 11 April 2017.
Schmidt, HP; Wilson K. (2014). The 55 uses of biochar. The Biochar Journal. Available at: https://www.biocharjournal.org/en/ct/2. Accessed 8 April 2017.
Scientific database Scopus. Available at: https://www.elsevier.com/solutions/scopus. Accessed 4 April 2017.
Spahis, N.; Addoun, A.; Mahmoudi, H.; Ghaffour, N. (2008). Purification of water by activated carbon prepared from olive Stones. Desalination 222(1-3): 519-527.
Sukiran, M.A.; Kheang, L.S.; Baker, N.A.; May, C.Y. (2011). Production and characterization of biochar from the pyrolysis of empty fruit bunches. American Journal of Applied Sciences 8(10): 984-988.
Swapna Priya, S.; Radha, K.V. (2015). Equilibrium, isotherm, kinetic and thermodynamic adsorption studies of tetracycline hydrochloride onto commercial grade granular activated carbon. International Journal of Pharmacy and Pharmaceutical Sciences 7(1): 42-51.
Vaccari, F.P.; Baront,i S.; Lugato, E.; Genesio, L.; Castaldi, S.; Fornasier, F.; Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 34: 231-238.
Verheijen, F.; Jeffery, S.; Bastos, C.; Van Der Velde, M.; Diafas, I. (2010). JRC Scientific and technical Report: Biochar Application to Soils. Available at: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC55799/jrc_biochar_soils.pdf. Accessed 11 April 2017.
Xuea, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal 200-202: 673-680.
Ying-Ying, W.; Zhen-Hu, X. (2016). Multi-walled carbon nanotubes and powder-activated carbon adsorbents for the removal of nitrofurazone from aqueous solution. Journal of Dispersion Science and Technology 37(5): 613-624.
Google Scholar