Zastosowanie biowęgla w procesie adsorpcji jonów rtęci z roztworów wodnych

Daria GĄSIOR



Wilhelm Jan TIC


https://orcid.org/0000-0002-9071-5565


Abstrakt

Biowęgiel zdefiniować można jako bogaty w węgiel produkt otrzymany poprzez termiczny rozkład materii organicznej w warunkach beztlenowych lub z nieznacznym udziałem tlenu. Usuwanie zanieczyszczeń z wody z zastosowaniem biowęgla stanowi opłacalne ekonomiczne, zgodne z założeniami zrównoważonego rozwoju rozwiązanie. W pracy analizowano stopień adsorpcji jonów rtęci na pirolizowanych odpadach organicznych pochodzących z kurzeńca, osadu ściekowego oraz słomy żytniej. Wyniki badań zestawiono z potencjałem adsorpcyjnym węgli aktywnych o różnym pochodzeniu i uziarnieniu. Określono wpływ pH, ilości dodawanych adsorbentów oraz czasu kontaktu adsorbenta z adsorptywem na wydajność procesu adsorpcji. Badane biowęgle charakteryzowały się dużą powierzchnią właściwą, a ich potencjał adsorpcyjny był porównywalny z potencjałem węgli aktywnych.

Słowa kluczowe:

zrównoważony rozwój, biowęgiel, węgiel aktywny, oczyszczanie wody, usuwanie zanieczyszczeń, adsorpcja

Agarwal, H.; Sharma, D.; Sindhu, S.K.; Tyagi, S.; Ikram, S. (2010). Removal of mercury from wastewater use of green adsorbents – a review. Electronic Journal of Environmental, Agricultural and Food Chemistry 9(9): 1155-1558.
  Google Scholar

Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99: 19-33.
  Google Scholar

Anacleto, A.L.; Carvalho, J.R. (1996). Mercury cementation from chloride solutions using iron, zinc and aluminium. Minerals Engineering 9(4): 385-397.
  Google Scholar

Asasian N.; Kaghazchi T. (2015). Sulfurized activated carbons and their mercury adsorption/desorption behavior in aqueous phase. International Journal of Environmental Science and Technology 12(8): 2511-2522.
  Google Scholar

Asasian, N.; Kaghazchi, T.; Soleimani, M. (2012). Elimination of mercury by adsorption onto activated carbon prepared from the biomass material. Journal of Industrial and Engineering Chemistry 18: 283-289.
  Google Scholar

Bis, Z. (2012). Biowęgiel – powrót do przeszłości, szansa dla przyszłości. Czysta Energia 6. Available at: http://kie.is.pcz.pl/images/biowegiel.pdf. Accessed 10 April 2016.
  Google Scholar

Blue, L.Y.; Jana, P.; Atwood, D.A. (2010). Aqueous mercury precipitation with the synthetic dithiolate, BDTH2. Fuel 89(6): 1326-1330.
  Google Scholar

Byrne, H.E.; Mazyck, D.W. (2009). Removal of trace level aqueous mercury by adsorption and photocatalysis on silica–titania composites. Journal of Hazardous Materials 170(2-3): 915-919.
  Google Scholar

Chiarle, S.; Ratto, M.; Rovatti, M. (2000). Mercury removal from water by ion exchange resins adsorption, Water Research 34(11): 2971-2978.
  Google Scholar

EBC (2012). European Biochar Certificate-Guidelines for a sustainable production of biochar. Arbaz (Switzerland): European Biochar Foundation (EBC). Available at: http://www.european-biochar.org/en/download. Accessed 10 April 2016.
  Google Scholar

Fábrega, M.; Guimarães, A.S.; Resende, G.P.S.; Mansur, M. B. (2016). Solvent extraction of mercury(II) from aqueous chloride solutions using Cyanex 302. Mineral Processing and Extractive Metallurgy, Section C: Source of the Document Transactions of the Institutions of Mining and Metallurgy: 1-6.
  Google Scholar

Fulbright, H.H.; Leaphart, M.; Van Brunt, V. (1997). Extraction and precipitation chemistry for mercury recovery from aqueous wastes. Separation Science and Technology 32(1-4): 373-386.
  Google Scholar

Han, D.S.; Orillano, M.; Khodary, A.; Duan, Y.; Batchelor, B.; Abdel-Wahaba, A. (2014). Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water. Water Research 53: 310-321.
  Google Scholar

Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R. (2011). Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts. Science of The Total Environment 409(3): 631-637.
  Google Scholar

Huang, S.; Ma, Ch.; Liao, Y.; Min, Ch.; Du, P.; Jiang, Y. (2016). Removal of mercury(II) from aqueous solutions by adsorption on poly(1-amino-5-chloroanthraquinone) nanofibrils: Equilibrium, kinetics, and mechanism studies. Journal of Nanomaterials: 1-11.
  Google Scholar

Huang, Y.; Du, J.R.; Zhang, Y.; Lawless, D.; Feng, X. (2015). Removal of mercury (II) from wastewater by polyvinylamine-enhanced ultrafiltration. Separation and Purification Technology 154: 1-10.
  Google Scholar

Kaghazchi, T.; Kolur, N.A.; Soleimani, M. (2010). Licorice residue and Pistachio-nut shell mixture: A promising precursor for activated carbon. Journal of Industrial and Engineering Chemistry 16(3): 368-374.
  Google Scholar

Kong, H.; He, J.; Gao, Y.; Wu, H.; Zhu, X. (2011). Cosorption of Phenanthrene and Mercury(II) from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry 59: 12116-12123.
  Google Scholar

Korzyści środowiskowe i ekonomiczne z klastrów biowęglowych w Europie Środkowej. Rozwój polityki dotyczącej biowęgla – materiały krajowe, E2BEBIS (Environmental and Economic Benefits from Biochar Clusters in the Central Area), nr projektu 4CE53P3 (2014). Available at: http://www.icimb.pl/opole/images/stories/Aktualnosci/e2bebis/CD_PL_final.pdf. Accessed 10 April 2016.
  Google Scholar

Ku, Y.; Wu, M.-H.; Shen, Y.-S. (2002). Mercury removal from aqueous solutions by zinc cementation. Waste Management 22(7): 721-726.
  Google Scholar

Litter, M.I. (2009). Treatment of Chromium, Mercury, Lead, Uranium, and Arsenic in Water by Heterogeneous Photocatalysis. Advances in Chemical Engineering 36: 37-67.
  Google Scholar

Lloyd-Jones P. et al. (2004). Mercury sorption from aqueous solution by chelating ion exchange resins, activated carbon and a biosorbent. Institution of Chemical Engineers: Part B: Process Safety and Environmental Protection 82(B4): 301-311.
  Google Scholar

Lu, X.; Jiang, J.; Sun, K.; Wang, J.; Zhang, Y. (2014). Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions. Marine Pollution Bulletin 78(1-2): 69-76.
  Google Scholar

Lu, X.; Jiang, J.; Sun, K.; Xie, X.; Hu, Y. (2012). Surface modification ion, characterization and adsorptive properties of a coconut activated carbon. Applied Surface Science 258: 8247-8252.
  Google Scholar

Malińska, K., (2012): Biowęgiel odpowiedzią na aktualne problem ochrony środowiska, Inżynieria i Ochrona Środowiska 15(4): 387-403.
  Google Scholar

Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review. Bioresource Technology 160: 191-202.
  Google Scholar

Nanseu-Njiki, Ch.P.; Tchamango, S.R.; Ngom, P.C.; Darchen, A.; Ngameni, E. (2009). Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes. Journal of Hazardous Materials 168(2-3): 1430-1436.
  Google Scholar

Oehmen, A.; Vergel, D.; Fradinho, J.; Reis, M.A.M.; Crespo J.G.; Velizarov S. (2014). Mercury removal from water streams through the ion exchange membrane bioreactor concept. Journal of Hazardous Materials 264: 6570.
  Google Scholar

Paranavithana, G.; Inoue, K.Y.; Saito, T.; Vithanage, M.; Kalpage, C.S.; Herath, G.B.B. (2016). Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environmental Earth Sciences 75(484): 1-12.
  Google Scholar

Reddy, M.L.P.; Francis, T. (2001). Recent advances in the solvent extraction of mercury(II) with calixarenes and crown ethers. Solvent Extraction and Ion Exchange 19: 839-863.
  Google Scholar

Regulation of the Minister of Environment of 18 November 2014 on the conditions that should be met during the disposal of waste into water or ground and on substances particularly harmful to the water environment, Journal of Laws of year 2014b, no. 0, item 1800, annex no. 4.
  Google Scholar

Regulation of the Minister of Environment of 21 December 2015 establishing the criteria for and the way of classifying the state of uniform parts of groundwater, Journal of Laws of year 2016, no. 0, item 85.
  Google Scholar

Regulation of the Minister of Environment of 22 October 2014 establishing the way of classifying the state of uniform parts of surface waters and environmental quality standards for priority substances, Journal of Laws of year 2014a, no. 0, item 1482, annex no. 9.
  Google Scholar

Regulation of the Minister of Health of 13 November 2015 on the quality of water intended for human consumption, Journal of Laws of year 2015, no. 0, item 1989, annex no. 2.
  Google Scholar

Santana, A.J.; dos Santos, W.N.L.; Silva, L.O.B.; das Virgens, C.F. (2016). Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies. Environmental Monitoring and Assessment 188: 293-304.
  Google Scholar

Schimmelpfennig, S.; Glaser, B. (2012). One step forward toward characterization: Some important material properties to distinguish biochars. Journal of Environmental Quality 41(4): 1001-1013.
  Google Scholar

Schmidt, H-P. (2012). 55 Uses of Biochar. Ithaka Journal 1: 286–289. Available at: http://www.ithakajournal.net/druckversionen/e082012-55-uses-of-bc.pdf. Accessed 10 April 2016.
  Google Scholar

Tchounwou, P.B.; Ayensu, W.K..; Ninashvili, N.; Sutton, D. (2003). Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology 18(3): 149-175.
  Google Scholar

Yao, H.; Lu, J.; Wu, J.; Lu, Z.; Wilson, P.Ch.; Shen, Y. (2013). Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: role of the sludge source. Water, Air, & Soil Pollution 224: 1-9.
  Google Scholar

Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, R.; Cao, X.; Pullammanappallil, P.; Yang, L. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials 190: 501-507.
  Google Scholar


Opublikowane
2020-12-15

Cited By / Share

GĄSIOR, D., & TIC, W. J. (2020). Zastosowanie biowęgla w procesie adsorpcji jonów rtęci z roztworów wodnych. Economic and Environmental Studies, 16(4 (40), 803–818. Pobrano z https://czasopisma.uni.opole.pl/index.php/ees/article/view/3078

Autorzy

Daria GĄSIOR 

Autorzy

Wilhelm Jan TIC 
https://orcid.org/0000-0002-9071-5565

Statystyki

Downloads

Download data is not yet available.