Microbiological Colourants Removal from Sugar Beet Molasses Vinasse – The Effects of Process Parameters and Vinasse Dilution

Marta Wilk


https://orcid.org/0000-0002-2260-6789

Małgorzata Krzywonos


https://orcid.org/0000-0002-2947-0503

Przemysław Seruga


https://orcid.org/0000-0003-1210-1063

Abstract

Distilleries, in addition to ethanol, produced vinasse which is hazardous for the environment. Sugar beet molasses vinasse (BMV) is the most problematic waste from distilleries because of the coloured compounds contained therein. Traditional methods of the removal of the pollutant load from the waste do not allow simultaneous decolourization. The paper presents a microbiological method of coloured compounds removal from BMV. The conditions of the process (pH and temperature) and vinasse concentration were optimized. The bacteria Lactobacillus plantarum MiLAB393 applied showed the decolourization activity of 26% in medium consisted of 30% v/v of BMV at pH0=6.5 and 35.8°C.

Keywords:

decolourization, sugar beet molasses vinasse, Lactobacillus plantarum, lactic acid bacteria

Adikane, V.H.; Dange, N.M.; Selvakumari, K. (2006). Optimization of anaerobically digested distillery molasses spent wash decolorization using soil as inoculum in the absence of additional carbon and nitrogen source. Bioresource Technology 97: 2131–2135.
  Google Scholar

Agnihotri, S. (2015). Decolorization study on synthetic colorants by using spore inoculum of Aspergillus oryzae JSA1. International Journal of Current Microbiology and Applied Sciences 4(10): 12–17.
  Google Scholar

Anonim (2000). Handbook of photometrical operation analysis. Dr. Lange BDB 079.
  Google Scholar

Arimi, M.M.; Zhang, Y.; Götz, G.; Geißen, S.-U. (2015). Treatment of melanoidin wastewater by anaerobic digestion and coagulation. Environmental Technology 36(19): 2410–2418.
  Google Scholar

Belitz, H.D.; Grosch, W.; Schieberle, P. (2004). Sugars, sugar alcohols, honey. in: Food Chemistry, 3rd edn. Springer, Germany.
  Google Scholar

Bernal, M.; Ruiz, M.O.; Geanta, R.M.; Benito, J.M.; Escudero, I. (2016). Colour removal from beet molasses by ultrafiltration with activated charcoal. Chemical Engineering Journal 283: 313–322.
  Google Scholar

Bharagava, R.N.; Chandra, R.; Rai, V. (2009). Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery effluent. World Journal of Microbiology and Biotechnology 25: 737–744.
  Google Scholar

Chung, M.-S.; Ruan, R.R.; Chen, P.L.; Wang, X. (1999). Physical and chemical properties of caramel systems. LWT - Food Science and Technology 32(3): 162–166.
  Google Scholar

David, C.; Arivazhagan, M.; Balamurali, M.N.; Shanmugarajan, D. (2015). Decolorization of distillery spent wash using biopolymer synthesized by Pseudomonas aeruginosa isolated from tannery effluent. BioMed Research International 2015: 1–9.
  Google Scholar

Georgiou, R.P.; Tsiakiri, E.P.; Lazaridis, N.K.; Pantazaki, A.A. (2016). Decolorization of melanoidins from simulated and industrial molasses effluents by immobilized laccase. Journal of Environmental Chemical Engineering 4(1): 1322–1331.
  Google Scholar

Jiranuntipon, S.; Chareonpornwattana, S.; Damronglerd, S.; Albasi, C.; Delia, M.-L. (2008). Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium. Journal of Industrial Microbiology & Biotechnology 35(11): 1313–21.
  Google Scholar

Krzywonos, M.; Seruga, P.; Wilk, M.; Borowiak, D.; Stelmach, K. (2016). Zastosowanie chromatografii żelowej do rozdziału substancji barwnych wywaru gorzelniczego. Acta Scientiarum Polonorum, Biotechnologia 15(1): 15-26.
  Google Scholar

Kumar, V.; Wati, L.; Fitzgibbon, F.; Nigam, P.; Banat, I.M.; Singh, D.; Marchant, R. (1997). Bioremediation and decolorization of anaerobically digested distillery spent wash. Biotechnology Letters 19(4): 311–313.
  Google Scholar

Limkhuansuwan, V.; Chaiprasert P. (2010). Decolorization of molasses melanoidins and palm oil mill effluent phenolic compounds by fermentative lactic acid bacteria. Journal of Environmental Sciences 22(8): 1209– 1217.
  Google Scholar

Migo, V.P.; Matsumura, M.; Del Rosario, E.J.; Kataoka, H. (1993). Decolorization of molasses wastewater using an inorganic flocculant. Journal of Fermentation and Bioengineering 75(6): 438–442. Mohana, S.; Desai, C.; Madamwar, D. (2007). Biodegradation and decolourization of anaerobically treated distillery spent wash by a novel bacterial consortium. Bioresource Technology 98: 333–339.
  Google Scholar

Ohmomo, S.; Daengsubha, W.; Yoshikawa, H.; Yui, M.; Nakajima, T.; Nakamura, I. (1988). Screening of anaerobic bacteria with the ability to decolorize molasses melanoidin. Agricultural and Biological Chemistry 52(10): 2429–2435.
  Google Scholar

Ryznar-Luty, A.; Cibis, E.; Krzywonos, M. (2009). Metody zagospodarowania wywaru melasowego – praktyka gospodarcza i badania laboratoryjne. Archiwum Gospodarki Odpadami i Ochrony Środowiska 11(2): 19–32.
  Google Scholar

Santal, A.R.; Singh, N.P.; Saharan, B.S. (2016). A novel application of Paracoccus pantotrophus for the decolorization of melanoidins from distillery effluent under static conditions. Journal of Environmental Management 169: 78–83.
  Google Scholar

Sapronov, A.R. (1963). Kolichectvennoe opredelenie krasyashchikh veshchestv v produktakh saharnogo proizvodstva (Quantitative determination of colorants in the sugar industry products). Sacharnaja Promyslennost' SSSR 37: 32–35.
  Google Scholar

Sirianuntapiboon, S.; Phothilangka, P.; Ohmomo, S. (2004). Decolorization of molasses wastewater by a strain No.BP103 of acetogenic bacteria. Bioresource Technology 92(1): 31–39.
  Google Scholar

Statsoft, Inc. (2011). Statistica (data analysis software system), version 10.
  Google Scholar

Szoege, H.M.; Wiśniewski, M. (2013). Ekonomiczne i ekologiczne aspekty produkcji etanolu energetycznego w małych gorzelniach rolniczych. Inżynieria Rolnicza 2(143): 215-224.
  Google Scholar

Tondee, T.; Sirianuntapiboon, S. (2008). Decolorization of molasses wastewater by Lactobacillus plantarum No. PV71-1861. Bioresource Technology 99(13): 6258–6265.
  Google Scholar

Vlissidis, A.; Zouboulis, A.I. (1993). Thermophilic anaerobic digestion of alcohol distillery wastewaters. Bioresource Technology 43(2): 131–140.
  Google Scholar

Vlyssides, A.; Israilides, C.; Loizidou, M.; Karvouni, G.; Mourafeti, V. (1997). Electrochemical treatment of vinasse from beet molasses. Water Science and Technology 36(2-3): 271–278.
  Google Scholar

Wilk, M.; Krzywonos, M.; Borowiak, D.; Seruga, P. (2015). Wpływ dodatku źródeł azotu, fosforu i węgla na stopień usunięcia związkow barwnych z melasowego wywaru buraczanego z zastosowaniem Lactobacillus plantarum MiLAB393. Acta Scientiarum Polonorum, Biotechnologia 14(3): 23–36.
  Google Scholar

Wilkie, A.C.; Riedesel, K.J.; Owens, J.M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy 19(2): 63–102.
  Google Scholar

Zuraida, S.M.; Nurhaslina, R.C.; Ku, H.K. (2013). Influence of agitation, pH and temperature on growth and decolorization of batik wastewater by bacteria Lactobacillus delbruckii. International Journal of Research and Reviews in Applied Sciences 14(2): 269–275.
  Google Scholar

Download


Published
2020-11-24

Cited by

Wilk, M., Krzywonos, M., & Seruga, P. (2020). Microbiological Colourants Removal from Sugar Beet Molasses Vinasse – The Effects of Process Parameters and Vinasse Dilution. Economic and Environmental Studies, 17(2 (42), 335–345. https://doi.org/10.25167/ees.2017.42.11

Authors

Marta Wilk 
https://orcid.org/0000-0002-2260-6789

Authors

Małgorzata Krzywonos 
https://orcid.org/0000-0002-2947-0503

Authors

Przemysław Seruga 
https://orcid.org/0000-0003-1210-1063

Statistics

Downloads

Download data is not yet available.