Usuwanie barwy z buraczanego wywaru melasowego z wykorzystaniem metody mikrobiologicznej – wpływ parametrów procesu oraz stopnia rozcieńczenia wywaru
Marta Wilk
https://orcid.org/0000-0002-2260-6789
Małgorzata Krzywonos
https://orcid.org/0000-0002-2947-0503
Przemysław Seruga
https://orcid.org/0000-0003-1210-1063
Abstrakt
W gorzelniach, jako produkt uboczny powstaje niebezpieczny dla środowiska wywar. Związki barwne zawarte w buraczanym wywarze melasowym (BWM) czynią go najbardziej problematycznym odpadem gorzelniczym. Tradycyjne metody usuwania ładunku zanieczyszczeń ścieków nie pozwalają na jednoczesne usunięcie barwy. W pracy przedstawiono metodę mikrobiologicznego usuwania związków barwnych zawartych w BWM. Zoptymalizowano warunki procesu (pH i temperaturę) oraz dobrano stężenie wywaru. Zastosowane bakterie Lactobacillus plantarum MiLAB393 w 26% usunęły barwę z BWM stanowiącego 30% v/v podłoża hodowlanego w pH0=6,5 i 35,8°C.
Słowa kluczowe:
dekoloryzacja, buraczany wywar melasowy, Lactobacillus plantarum, bakterie fermentacji mlekowejBibliografia
Adikane, V.H.; Dange, N.M.; Selvakumari, K. (2006). Optimization of anaerobically digested distillery molasses spent wash decolorization using soil as inoculum in the absence of additional carbon and nitrogen source. Bioresource Technology 97: 2131–2135.
Google Scholar
Agnihotri, S. (2015). Decolorization study on synthetic colorants by using spore inoculum of Aspergillus oryzae JSA1. International Journal of Current Microbiology and Applied Sciences 4(10): 12–17.
Google Scholar
Anonim (2000). Handbook of photometrical operation analysis. Dr. Lange BDB 079.
Google Scholar
Arimi, M.M.; Zhang, Y.; Götz, G.; Geißen, S.-U. (2015). Treatment of melanoidin wastewater by anaerobic digestion and coagulation. Environmental Technology 36(19): 2410–2418.
Google Scholar
Belitz, H.D.; Grosch, W.; Schieberle, P. (2004). Sugars, sugar alcohols, honey. in: Food Chemistry, 3rd edn. Springer, Germany.
Google Scholar
Bernal, M.; Ruiz, M.O.; Geanta, R.M.; Benito, J.M.; Escudero, I. (2016). Colour removal from beet molasses by ultrafiltration with activated charcoal. Chemical Engineering Journal 283: 313–322.
Google Scholar
Bharagava, R.N.; Chandra, R.; Rai, V. (2009). Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery effluent. World Journal of Microbiology and Biotechnology 25: 737–744.
Google Scholar
Chung, M.-S.; Ruan, R.R.; Chen, P.L.; Wang, X. (1999). Physical and chemical properties of caramel systems. LWT - Food Science and Technology 32(3): 162–166.
Google Scholar
David, C.; Arivazhagan, M.; Balamurali, M.N.; Shanmugarajan, D. (2015). Decolorization of distillery spent wash using biopolymer synthesized by Pseudomonas aeruginosa isolated from tannery effluent. BioMed Research International 2015: 1–9.
Google Scholar
Georgiou, R.P.; Tsiakiri, E.P.; Lazaridis, N.K.; Pantazaki, A.A. (2016). Decolorization of melanoidins from simulated and industrial molasses effluents by immobilized laccase. Journal of Environmental Chemical Engineering 4(1): 1322–1331.
Google Scholar
Jiranuntipon, S.; Chareonpornwattana, S.; Damronglerd, S.; Albasi, C.; Delia, M.-L. (2008). Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium. Journal of Industrial Microbiology & Biotechnology 35(11): 1313–21.
Google Scholar
Krzywonos, M.; Seruga, P.; Wilk, M.; Borowiak, D.; Stelmach, K. (2016). Zastosowanie chromatografii żelowej do rozdziału substancji barwnych wywaru gorzelniczego. Acta Scientiarum Polonorum, Biotechnologia 15(1): 15-26.
Google Scholar
Kumar, V.; Wati, L.; Fitzgibbon, F.; Nigam, P.; Banat, I.M.; Singh, D.; Marchant, R. (1997). Bioremediation and decolorization of anaerobically digested distillery spent wash. Biotechnology Letters 19(4): 311–313.
Google Scholar
Limkhuansuwan, V.; Chaiprasert P. (2010). Decolorization of molasses melanoidins and palm oil mill effluent phenolic compounds by fermentative lactic acid bacteria. Journal of Environmental Sciences 22(8): 1209– 1217.
Google Scholar
Migo, V.P.; Matsumura, M.; Del Rosario, E.J.; Kataoka, H. (1993). Decolorization of molasses wastewater using an inorganic flocculant. Journal of Fermentation and Bioengineering 75(6): 438–442. Mohana, S.; Desai, C.; Madamwar, D. (2007). Biodegradation and decolourization of anaerobically treated distillery spent wash by a novel bacterial consortium. Bioresource Technology 98: 333–339.
Google Scholar
Ohmomo, S.; Daengsubha, W.; Yoshikawa, H.; Yui, M.; Nakajima, T.; Nakamura, I. (1988). Screening of anaerobic bacteria with the ability to decolorize molasses melanoidin. Agricultural and Biological Chemistry 52(10): 2429–2435.
Google Scholar
Ryznar-Luty, A.; Cibis, E.; Krzywonos, M. (2009). Metody zagospodarowania wywaru melasowego – praktyka gospodarcza i badania laboratoryjne. Archiwum Gospodarki Odpadami i Ochrony Środowiska 11(2): 19–32.
Google Scholar
Santal, A.R.; Singh, N.P.; Saharan, B.S. (2016). A novel application of Paracoccus pantotrophus for the decolorization of melanoidins from distillery effluent under static conditions. Journal of Environmental Management 169: 78–83.
Google Scholar
Sapronov, A.R. (1963). Kolichectvennoe opredelenie krasyashchikh veshchestv v produktakh saharnogo proizvodstva (Quantitative determination of colorants in the sugar industry products). Sacharnaja Promyslennost' SSSR 37: 32–35.
Google Scholar
Sirianuntapiboon, S.; Phothilangka, P.; Ohmomo, S. (2004). Decolorization of molasses wastewater by a strain No.BP103 of acetogenic bacteria. Bioresource Technology 92(1): 31–39.
Google Scholar
Statsoft, Inc. (2011). Statistica (data analysis software system), version 10.
Google Scholar
Szoege, H.M.; Wiśniewski, M. (2013). Ekonomiczne i ekologiczne aspekty produkcji etanolu energetycznego w małych gorzelniach rolniczych. Inżynieria Rolnicza 2(143): 215-224.
Google Scholar
Tondee, T.; Sirianuntapiboon, S. (2008). Decolorization of molasses wastewater by Lactobacillus plantarum No. PV71-1861. Bioresource Technology 99(13): 6258–6265.
Google Scholar
Vlissidis, A.; Zouboulis, A.I. (1993). Thermophilic anaerobic digestion of alcohol distillery wastewaters. Bioresource Technology 43(2): 131–140.
Google Scholar
Vlyssides, A.; Israilides, C.; Loizidou, M.; Karvouni, G.; Mourafeti, V. (1997). Electrochemical treatment of vinasse from beet molasses. Water Science and Technology 36(2-3): 271–278.
Google Scholar
Wilk, M.; Krzywonos, M.; Borowiak, D.; Seruga, P. (2015). Wpływ dodatku źródeł azotu, fosforu i węgla na stopień usunięcia związkow barwnych z melasowego wywaru buraczanego z zastosowaniem Lactobacillus plantarum MiLAB393. Acta Scientiarum Polonorum, Biotechnologia 14(3): 23–36.
Google Scholar
Wilkie, A.C.; Riedesel, K.J.; Owens, J.M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy 19(2): 63–102.
Google Scholar
Zuraida, S.M.; Nurhaslina, R.C.; Ku, H.K. (2013). Influence of agitation, pH and temperature on growth and decolorization of batik wastewater by bacteria Lactobacillus delbruckii. International Journal of Research and Reviews in Applied Sciences 14(2): 269–275.
Google Scholar